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Abstract
The quantum dynamics of a strongly coupled single quantum dot–cavity system with non-zero
detuning in a phonon bath is investigated theoretically in terms of a perturbation treatment
based on a unitary transformation and an operator displacement. The decoherence due to
phonons as a function of the detuning between the cavity mode and exciton is obtained
analytically. It is shown that the detuning has a significant impact on the quantum dot exciton
lifetime. In realistic experimental conditions, the calculated exciton lifetimes are in good
agreement with recent experimental observation (Hennessy et al 2007 Nature 445 896).

1. Introduction

The potential applications of semiconductor quantum dots
confined in a microcavity in quantum information processing
have generated considerable research efforts in recent
years [1]. In such dot–cavity systems, excitons in quantum
dots constitutes an alternate two-level system instead of the
usual two-level atomic system. The nanocavity with a small
volume and a high Q is fabricated by micropillar, microdisk
and a photonic crystal slab [1]. Recently, many experimental
studies concentrate on vacuum Rabi splittings in these quantum
dot–cavity systems [2–6]. Badolato et al [5] have used a
deterministic approach to the implementation of solid-state
cavity quantum electrodynamics (QED) based on a precise
spatial and spectral overlap between a single quantum dot
and a photonic crystal nanocavity. For such a quantum dot–
cavity QED, the exciton–phonon interaction is very important
during their interaction with photons [7, 8] and can cause
decoherence. The understanding of decoherence due to
phonons in these systems is also indispensable for practical
applications. In terms of a polaron operator technique, Wilson-
Rae and Imamoglu [9] have shown the reduction of dot–cavity
coupling strength due to the exciton–phonon interaction. Zhu
et al [10] have studied the impact of exciton–phonon coupling
on a coherently driven dot–cavity system at zero detuning. The
collapse and revival of Rabi oscillations are predicted. Larson
et al [11] have also investigated Rabi oscillations in a quantum
dot–cavity system coupled to a non-zero temperature phonon

bath beyond the Born–Markov approximation. The influence
of quantum lattice fluctuations on the vacuum Rabi frequency
has been presented by Zhu and coauthors [12]. With density
matrix theory and quantum kinetic equations, the phonon-
assisted damping of Rabi oscillation has been investigated
by Förstner et al [13, 14]. Utilizing the independent boson
model, excitation transfer in coupled nanostructures has been
solved exactly by Richter et al [15]. However the detuning
effect between the exciton and cavity in such a system has not
yet been shown. How to obtain the quantum dynamics of a
strongly coupled quantum dot–cavity system including both
the detuning effect and exciton–phonon coupling is difficult
in both theory and experiment. Most recently, Hennessy et al
[16] have investigated the quantum nature of a strongly coupled
single quantum dot–cavity system with different detunings.
The experimental results showed that the larger the detuning,
the longer the quantum dot exciton lifetime. In theory, a
generalized version of the rotating-wave approximation for the
single-mode spin-boson model is presented for all values of the
coupling strength and a wide range of detuning values [17]. On
the other hand, Rabi oscillations of excitons in single quantum
dots have been observed in recent experiments [18–22].
Especially, Ramsay et al [23] observed a damped Rabi
oscillation in a coherently driven InGaAs quantum dot without
cavity for several detunings. Wu et al [24] and Mogilevtsev
et al [25] have theoretically demonstrated the damping of
Rabi oscillations with a driving field in a quantum dot
without cavity, which is a consequence of non-Markovian
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effects due to the coupling of the system to a phonon bath.
The observation of such oscillations is a first step towards
quantum information processing. In the present paper, we
investigate the quantum dynamics of a dot–cavity system in
the presence of decoherence due to a phonon bath. By using a
variational approach, applying canonical transformations and
using perturbation theory, we calculate the phonon induced
decoherence rate and the survival probability of the initial
state. We extend our previous model [10] to include detuning
between the cavity mode and the exciton frequency since the
detuning effects are important for the experiment by Hennessy
et al [16]. The decoherence rate induced by acoustic phonons
as a function of the detuning between the cavity mode and
exciton is obtained explicitly and a comparison with recent
experimental results is demonstrated. It is shown that the
calculated values of quantum dot exciton lifetime through
the relation to the decoherence rate are in agreement with
the observed ones for non-zero detunings [16]. Further, the
influence of the dot size on the decoherence rate is also
discussed.

The paper is organized as follows. Section 2 gives the
theoretical model for a single quantum dot–cavity system and
solves it in terms of a perturbation method based on a unitary
transformation and an operator displacement. In section 3,
the numerical results for the phonon induced decoherence are
shown and a comparison with the recent experimental result is
presented. Finally, a summary is given in section 4.

2. Theory

Based on the recent experiment by Hennessy et al [16],
we assume a single quantum dot confined in a single-mode
microcavity and coupled to a phonon bath. The quantum dot is
described by a conventional two-level model which consists
of the electronic ground state |g〉 and the lowest electron–
hole(exciton) state |e〉 [21, 26]. This simple model has been
used widely and testified to be a successful one to explain
the key nature of a single quantum dot [8, 9]. Then this
single two-level system couples to a single cavity mode in the
presence of decoherence due to a phonon bath. In such a way,
we can treat this two-level system simply by pseudospin − 1

2
operators Sz and S±. The cavity mode is characterized by
the annihilation and creation operators a and a+, respectively.
Such a dot–cavity system with a coherent drive at zero detuning
is investigated by our previous work [10]. The collapse
and revival of Rabi oscillations are predicted as the dot is
coherently driven by a classical strong field, but there is no
detuning effect in our previous work. Since the detuning effects
are important for the experiment done by Hennessy et al [16],
we should study quantum dynamics of the dot–cavity system
with non-zero detuning in detail so that we can compare our
calculations with the experimental results.

The Hamiltonian for this system in the rotating-wave
approximation reads (h̄ = 1) [9, 10]:

H = ωex Sz + ωca+a + g(S+a + S−a+)+
∑

�q
ω�q c+

�q c�q

+ Sz
∑

�q
M�q(c+

�q + c�q). (1)

This model Hamiltonian (equation (1)) is equivalent to the
‘spin-boson’ Hamiltonian coupled to a single cavity mode [9].
However, the ‘spin-boson’ Hamiltonian cannot be solved
exactly. Various analytical or numerical approaches have been
proposed to obtain an approximate solution of it (e.g. see
Leggett et al [27]).

We apply a transformation exp[−iωc(Sz + a+a)t] to the
above Hamiltonian in a rotating frame with cavity frequency
ωc, and then the Hamiltonian is transformed to

H = �Sz + g(S+a + S−a+)+
∑

�q
ω�q c+

�q c�q

+ Sz
∑

�q
M�q(c+

�q + c�q), (2)

where � = ωex − ωc is the detuning between the cavity
mode and exciton with energy ωex. g is the single-photon Rabi
frequency. c+

�q (c�q ) is the creation (annihilation) operator of the
phonon with the momentum �q and energy ω�q . M�q refers to the
matrix elements characterizing the exciton–phonon interaction.
For simplicity, we ignore the off-diagonal exciton–phonon
interaction if the energy spacing between the states in quantum
dots is larger than 20 meV while the temperature is low enough
(T < 50 K) [8]. The Hamiltonian (2) includes both non-zero
detuning and exciton–phonon coupling and is not easy to solve
even using the method shown in [10]. Therefore, we firstly
make a displacement to all boson modes [28],

c�q = b�q − M�q
2ω�q

σ0, (3)

where σ0 is a constant which can be determined later. Then we
apply a canonical transformation [10, 29, 30],

H ′ = exp (A)H exp (−A) (4)

with

A =
∑

�q

M�q
ω�q
ξ�q(b+

�q − b�q)(Sz − σ0/2), (5)

where ξ�q is a variational parameter and the Hamiltonian is
decomposed into three parts,

H ′ = H ′
0 + H ′

1 + H ′
2 (6)

where

H ′
0 = �′Sz + ηg(S+a + S−a+)+

∑

�q
ω�q b+

�q b�q

−
∑

�q

M2
�q

4ω�q
ξ�q(2 − ξ�q)+

∑

�q

M2
�q

4ω�q
σ 2

0 (1 − ξ�q)2, (7)

H ′
1 =

∑

�q
M�q (1 − ξ�q)(b+

�q + b�q)(Sz − σ0/2)

+ ηg(S+a − S−a+)
∑

�q

M�q
ω�q
ξ�q(b+

�q − b�q), (8)

H ′
2 = gS+a

[
exp

(
∑

�q

M�q
ω�q
ξ�q(b+

�q − b�q)

)
− η

]

+ h.c.− ηg(S+a − S−a+)
∑

�q

M�q
ω�q
ξ�q(b+

�q − b�q), (9)
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where

�′ = �− τσ0, τ =
∑

�q

M2
�q

ω�q
(1 − ξ�q)2. (10)

The variational parameters η and ξ�q can be adjusted to
minimize H ′

1 and H ′
2. Next we apply another canonical

transformation [31]

H ′′ = exp (Q)H ′ exp (−Q) = H ′′
0 + H ′′

1 + H ′′
2 (11)

with
Q = θ(4N)−

1
2 (S+a − S−a+), (12)

where
N = a+a + Sz + 1

2 , (13)

cos θ = �′

W
, sin θ = 2ηg

√
N

W
, (14)

W =
√

4(ηg)2 N + (�′)2, (15)

where N is an operator that represents the total excitation in
the exciton–cavity field system. We can easily obtain

H ′′
0 = W Sz +

∑

�q
ω�q b+

�q b�q −
∑

�q

M2
�q

4ω�q
ξ�q(2 − ξ�q)

+
∑

�q

M2
�q

4ω�q
σ 2

0 (1 − ξ�q)2, (16)

H ′′
1 =

∑

�q
M�q(1 − ξ�q)(b+

�q + b�q)
(
�′

W
Sz − σ0/2

)

− ηg

W
(S+a + S−a+)

∑

�q
M�q (1 − ξ�q)(b+

�q + b�q)

+ ηg(S+a − S−a+)
∑

�q

M�q
ω�q
ξ�q(b+

�q − b�q), (17)

H ′′
2 = exp (Q)H ′

2 exp (−Q). (18)

Obviously, due to the decoupling of the phonon subsystem
and the exciton–photon subsystem, we can easily solve H ′′

0 for
which the eigenstates can be expressed directly as |±〉|{n �q}〉
with

|+〉 = |e,m〉, |−〉 = |g,m〉, (19)

where m refers to the photon number of the cavity field while
|{n �q}〉 means that there are n �q phonons for mode �q . The ground
state of H ′′

0 is given by

|G0〉 = |−〉|{0�q}〉, (20)

where |{0�q}〉 represents the vacuum state for phonons. Since
H ′′

1 and H ′′
2 should be small enough to be regarded as

perturbation, we let H ′′
1 |G0〉 = 0 and 〈G0|H ′′

2 |G0〉 = 0. Then
we can obtain ξ�q , σ0 and η as follows:

ξ�q = ω�q
ω�q + W

, (21)

σ0 = −�
′

W
, (22)

η = exp

(
−

∑

�q

M2
�q

2ω2
�q
ξ 2

�q

)
. (23)

We note that

�′ = �

1 − τ
W

, cos θ = �

W − τ
, (24)

therefore θ is in the range of 0 � θ � π/2 and θ = π
2 just

corresponds to the case at resonance (� = 0, i.e. ωc = ωex).
Further, we denote the lowest excited states as |+〉|{0�q}〉

and |−〉|{1�q}〉 where |{1�q}〉 means that there is only one phonon
for mode �q and no phonon for other modes. Then we can show

that 〈{0�q}|〈+|H ′′
1 |−〉|{1�q}〉 = V�q , where V�q = − 2ηg

√
m+1M�qξ�q
ω�q .

Next, we make linear combination of the lowest excited states
of the H ′′

0 to diagonalize H ′′ as [29, 32]

H ′′ = − W

2
|G0〉〈G0| +

∑

E

E |E〉〈E |. (25)

The experiment in [16] is performed at 4.2 K. At such a low
temperature, the multiphonon process is weak enough to be
negligible. So the transformation reads:

|−〉|{1�q}〉 =
∑

E

y�q(E)|E〉, (26)

|+〉|{0�q}〉 =
∑

E

x(E)|E〉, (27)

|E〉 = x(E)|+〉|{0�q}〉 +
∑

�q
y�q(E)|−〉|{1�q}〉, (28)

where

x(E) =
[

1 +
∑

�q

V 2
�q

(
E + W

2 − ω�q
)2

]−1/2

, (29)

y�q(E) = V�q(
E + W

2 − ω�q
) x(E), (30)

and the E’s are diagonalized excitation energies; they are the
solutions of the equation

E − W

2
−

∑

�q

V 2
�q(

E + W
2 − ω�q

) = 0. (31)

The population inversion can be defined as P(t) =
〈ψ(t)|σ z|ψ(t)〉 [27] where σ z(= 2Sz) is a Pauli operator and
|ψ(t)〉 is the total wavefunction in the Schrödinger picture, and

|ψ(t)〉 = e−iωc( 1
2 σ

z+a+a)t e−Ae−Qe−iH ′′t eQeA|ψ(0)〉. (32)

It is reasonable to choose the initial state as |ψ(0)〉 =
e−A|e〉|{0�q}〉|vac〉, in which |vac〉 is the vacuum state of the
cavity field which corresponds to the number of the photon
m = 0. Thus

P(t) = 〈vac|〈{0�q}|〈e|e−QeiH ′′t eQσ ze−Qe−iH ′′t eQ |e〉
× |{0�q}〉|vac〉. (33)

3
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By using equations (29)–(33), we can obtain:

P(t) = − (1 − cos θ)

2
cos θ − (1 + cos θ)

2
cos θ

×
∑

�q,E,E ′
y�q(E ′)y∗

�q (E)x
∗(E ′)x(E)ei(E−E ′)t

+ (1 + cos θ)

2
cos θ

∑

E,E ′
|x(E)|2|x(E ′)|2ei(E−E ′)t

+ sin2 θ

2

∑

E

(|x(E)|2ei(E+ W
2 )t + |x(E)|2e−i(E+ W

2 )t). (34)

Employing the orthogonal property:
∑

�q
y�q(E ′)y∗

�q (E) = δ(E − E ′)− x(E ′)x∗(E) (35)

and
∑

E

|x(E)|2e±iEt = 1

2π i
e∓i W

2 t
∮

e±i(E+ W
2 )t dE

E − W
2 − ∑

�q
V 2

�q
E+ W

2 −ω�q

= 1

2π i
e∓i W

2 t
∮

e±iωt dω

ω − W − ∑
�q

V 2
�q

ω−ω�q ∓i0+

, (36)

where we have replaced ω by E + W
2 , and the real and

imaginary part of
V 2

�q
ω−ω�q±i0+ as R(ω) and ∓γ (ω), respectively,

and we obtain

R(ω) =
∑

�q
℘

V 2
�q

ω − ω�q

= −4(ηg)2
∫ ∞

0
dω′ J (ω′)

(ω − ω′)(ω′ + W )
, (37)

γ (ω) = π
∑

�q
V 2

�q δ(ω − ω�q) = 4π(ηg)2
J (ω)

(ω + W )2
, (38)

where ℘ represents the Cauchy principle value. J (ω) =∑
�q M2

�q δ(ω − ω�q) is the spectral density. The parameter η can
be decided by equation (23) and can be expressed as

η = exp

{
−

∫ ∞

0
dω

J (ω)

2(ω + W )2

}
. (39)

The contour integral in equation (36) can be calculated by the
residue theorem, and then we obtain:

P(t) = − cos θ + cos θ(1 + cos θ)e−2γ (ω0)t

+ sin2 θ cos(ω0t)e−γ (ω0)t , (40)

where ω0 is the solution of the equation

ω − W − R(ω) = 0, (41)

where
W =

√
4(ηg)2 + (�′)2. (42)

As Kuhn et al [33, 34] have shown that at very low
temperatures the deformation coupling which arises from LA-
phonons makes the dominant contribution of phonons in a
single quantum dot, so we use the superohmic spectral density

to describe the deformation coupling: J (ω) = 2αω3e− 1
2 (

ω
ωl
)2

where ωl = s/ l is the cut-off frequency (s is the sound velocity

Figure 1. The population inversion as a function of time for three
different detunings (−0.15 nm, 0, 0.15 nm). The single-photon Rabi
frequency g is 90 μeV, the cut-off frequency ωl is 1 ps−1 and the
exciton–phonon coupling constant α is 0.036 ps2.

and l is the dot size) and α is the coupling constant which can
be expressed as [35, 36] α = (Dc−Dv)

2

8π2ρs5 where Dc and Dv are
the deformation potentials for conduction band and valence
band respectively, and ρ refers to the material density. For the
self-organized InAs/GaAs quantum dots, Dc − Dv = 6.5 eV,
ρ = 5.667 g cm−3 and s = 3800 m s−1 [37–39], and then the
deformation coupling constant α ≈ 0.036 ps2. In the second
order approximation, ω0 ≈ W , and equation (38) becomes

γ = γ (W ) = 2πη2g2αWe− 1
2 (

W
ωl
)2
. (43)

This explicit expression is the phonon induced decoherence
rate of the coupled exciton–cavity modes. It is obvious that this
decoherence depends strongly on the detuning between exciton
and cavity mode (see equations (24) and (43)), the strength
of exciton–phonon coupling, the single-photon Rabi frequency
and the size of the quantum dot. From equation (43) we can
obtain the dephasing time T2 = γ−1. If the collision time is
neglected, the lifetime T1 of the quantum dot exciton (a two-
level system) is approximately equal to 1

2 T2 as shown in [31].
Recently, Hennessy et al [16] have measured the lifetime
of quantum dot excitons for several detunings in a strongly
coupled single quantum dot–cavity system, therefore we can
compare our calculations to this experimental observation.

If exciton–phonon couplings in the dot–cavity system are
neglected, then α = 0 and γ = 0, we obtain from equation (40)

P(t) = 1

�2 + 4g2
{�2 + 4g2 cos[(�2 + 4g2)1/2t]}. (44)

This is the vacuum Rabi oscillation with detuning �(=
ωex − ωc) in the Jaynes–Cummings model [31]. Therefore,
equation (40) describes a damped vacuum Rabi oscillation
in the dot–cavity system which couples to a phonon bath
(also see figure 1). As the detuning increases, the amplitude
of the oscillation reduces as a second order of sin θ which
is characterized by the ratio of detuning (�) to the single-
photon Rabi frequency (g) according to equation (40). So the
detuning tends to diminish the Rabi oscillation as commonly
considered. From equation (40), we can see that the second

4
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Figure 2. The phonon induced decoherence rate γ as a function of
detuning with three different ωl (0.5, 0.7, 1 ps−1). The single-photon
Rabi frequency g is 90 μeV and the exciton–phonon coupling
constant α is 0.036 ps2.

term, which behaves as a direct decay instead of an oscillation,
apparently appears only for the non-zero detuning. If there
is no detuning, the final state is found to be P(∞) = 0,
but is shifted to P(∞) = − cos θ with non-zero detuning
according to equation (40). Compared to the non-oscillation
term �2

�2+4g2 in equation (44) describing the situation of non-
zero detuning without exciton–phonon coupling, we find that
the shift of the final state appears in terms of the joint effect
of both the detuning and the phonon–exciton coupling. So
the second term in equation (40) refers to the contribution
of phonon–exciton coupling to the shift of the final state in
the asymmetric situation with non-zero detuning. It behaves
as a fast direct decay and disappears in the symmetric case
without detuning. Therefore, equation (40) indicates a physical
picture such that for the non-zero detuning, the excitonic
Rabi oscillation emitting and absorbing a photon becomes less
effective and tends to cease with increasing time because of
the influence of phonon bath. The exciton–phonon coupling
results in a fast decay of the whole system of the strongly
coupled exciton–cavity mode, the oscillation ends up in the
state P(∞) = − cos θ .

3. Results and discussions

In order to compare our calculations with recent experi-
ment [16], we choose self-organized InAs/GaAs quantum dots
for illustrating the numerical results. The wavelength of the
exciton is 944.8 nm and the single-photon Rabi frequency g
is 90 μeV. There are no exact experimental results about the
size of quantum dot [40]. Here for the sake of simplicity, we
assume that the InAs quantum dot is spherical, then the above
exciton wavelength corresponds to a dot size of 4.2 nm. Fig-
ure 1 shows the population inversion as a function of time for
three different detunings �λ (= λex − λm, where λex and λm

represent the resonant exciton and cavity-mode wavelength, re-
spectively). The cut-off frequency ωl corresponding to the dot
size is assumed to be 1 ps−1 (i.e. dot size l ≈ 4.2 nm). It is
obvious from the figure that a damped vacuum Rabi oscilla-
tion can occur in the strong coupling regime. We can also see

Table 1. A comparison between the experimental results [16] and
the calculated values in this work.

Calculated/experimental �λ (nm) T1 (ns)

Calculated 0 0.425
1.26 1.1
1.30 1.4

Experimental [16] 0 0.06
1.30 1.6

that the symmetry of population inversion is broken when the
detuning is not equal to zero.

Figure 2 presents the decoherence rate (γ ) of Rabi
oscillation due to influence of the phonon bath as a function
of detuning with three different ωl (0.5, 0.7, 1 ps−1). It
shows that the decoherence rate first increases then decreases
with an increase of the detuning. We can also see a fast
reduction of decoherence rate with an increase of detuning as
the detuning becomes large. According to our theory, when
the detuning is larger, ω0 in equation (41) goes beyond the
cut-off frequency which is decided by the dot size. As a
result, the decoherence rate, which is deeply related to the
spectral density, reduces fast and becomes very small for
large detuning. Therefore, if the detuning is larger than a
special value (e.g. for the size 4.2 nm of InAs quantum dot,
the detuning is larger than 0.5 nm), the quantum dot exciton
lifetime is increased with increased detuning. In the recent
experimental conditions, we obtain that the lifetimes T1 of
quantum dot exciton for the detuning of 1.3 nm at ωl =
1 ps−1 (i.e. the dot size l ≈ 4.2 nm) is 1.4 ns, which is
in good agreement with the experimental value 1.6 ns by
Hennessy et al [16] (see table 1). From table 1, we also
note that the calculated value does not agree well with the
experimental result at resonance (�λ = 0). This is because
the contribution from the quadratic coupling to acoustic
phonons becomes significant and may not be neglected at zero
detuning as discussed by Muljarov and Zimmermann [41].
As shown in the figure our theory predicts that the phonon
induced decoherence rate increases in the small regime of
exciton–cavity detuning, which seems a little puzzling since
the excitonic-type contribution to the cavity–exciton mode is
commonly regarded as diminishing with increasing exciton–
cavity detuning. However, here we only take phonon–
exciton interaction as the major source of decoherence and
the dot size is assumed to be rather small. In such a
case, the phonon–exciton coupling becomes significant and
is increased with small detuning so that it causes an increase
of decoherence rate. But as the dot size becomes slightly
larger, the decoherence rate diminishes much faster and a
further increase in value with detuning becomes much less
obvious (see figure 2). This implies the significant effect
of dot size on this phonon–exciton–photon coupling system
and suggests that for the quantum computation based on dot–
cavity system, the size of dot can be adjusted to modify
the decoherence rate due to detuning. For applications in
quantum computation systems based on quantum dots [42],
detuning is usually used to prevent some transitions, so a
good understanding of detuning effects helps one to control
the process better.
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Figure 3. The phonon induced decoherence rate γ as a function of
the cut-off frequency ωl with three different detunings
(0, 0.15 nm, 0.25 nm). The single-photon Rabi frequency g is
90 μeV and the exciton–phonon coupling constant α is 0.036 ps2.

Figure 3 shows the decoherence rate as a function of
the cut-off frequency (ωl ) with three different detunings
(0, 0.15 nm, 0.25 nm). We can see that the decoherence rate
initially increases with the cut-off frequency, changing fairly
smoothly as the cut-off frequency becomes large. This shows
the impact of the dot size on the phonon induced decoherence
rate, and when the dot size becomes small (i.e. for large ωl), the
variation of decoherence rate via the dot size is less obvious. It
should be emphasized that many other factors may also cause
decoherence, such as the coupling with the continuum wetting
layer states or the existence of multiexciton states [43]. The
results including these factors are certainly complete. We will
treat these factors in our theory elsewhere.

4. Conclusions

In conclusion, we have investigated the detuning effect
on quantum dynamics and phonon induced decoherence of
a single quantum dot–cavity system based on a unitary
transformation and an operator displacement. A damped
vacuum Rabi oscillation in the strong coupling regime
is presented. A rather simple form of the decoherence
induced by acoustic phonons as a function of the detuning
between the cavity mode and exciton is obtained explicitly
and a comparison with recent experimental observations is
demonstrated. The good agreement between the model and the
experimental results confirms our theoretical method proposed
here is reasonable. It should be noted that our model
calculation does not agree with the experimental result at very
large detuning (�λ = 4.1 nm) since the proposed model is
no longer suitable at large detunings. Finally, we hope that
the predictions of this work can be confirmed by experiment
in the near future and may offer improvements in quantum
information processing based on quantum dot–cavity systems.
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